首页> 外文OA文献 >Predicting Bugs' Components via Mining Bug Reports
【2h】

Predicting Bugs' Components via Mining Bug Reports

机译:通过挖掘错误报告预测错误的组件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The number of bug reports in complex software increases dramatically. Nowbugs are triaged manually, bug triage or assignment is a labor-intensive andtime-consuming task. Without knowledge about the structure of the software,testers often specify the component of a new bug wrongly. Meanwhile, it isdifficult for triagers to determine the component of the bug only by itsdescription. We dig out the components of 28,829 bugs in Eclipse bug projecthave been specified wrongly and modified at least once. It results in thesebugs have to be reassigned and delays the process of bug fixing. The averagetime of fixing wrongly-specified bugs is longer than that ofcorrectly-specified ones. In order to solve the problem automatically, we usehistorical fixed bug reports as training corpus and build classifiers based onsupport vector machines and Na\"ive Bayes to predict the component of a newbug. The best prediction accuracy reaches up to 81.21% on our validation corpusof Eclipse project. Averagely our predictive model can save about 54.3 days fortriagers and developers to repair a bug. Keywords: bug reports; bug triage;text classification; predictive model
机译:复杂软件中的错误报告数量急剧增加。 Nowbug是手动分类的,bug的分类或分配是一项费时费力的工作。在不了解软件结构的情况下,测试人员经常错误地指定新错误的组件。同时,分类者仅凭其描述就难以确定漏洞的组成部分。我们从Eclipse错误项目中挖掘了28,829个错误的组件,这些组件被错误地指定并至少修改了一次。这导致必须重新分配这些错误,并延迟了错误修复的过程。修复错误指定的错误的平均时间比错误指定的错误的平均时间长。为了自动解决问题,我们使用历史性的固定错误报告作为训练语料库,并基于支持向量机和Naiveive Bayes建立分类器以预测新错误的成分。在我们的验证语料库中,最佳预测精度可达81.21% Eclipse项目:平均而言,我们的预测模型可以为研究人员和开发人员节省大约54.3天的时间来修复错误关键字:错误报告;错误分类;文本分类;预测模型

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号